#### Procedural Methods For LARGE SCALE DESTRUCTION

NAFEES BIN ZAFAR **DREAMWORKS ANIMATION** 

Mårten Larsson, Ryo Sakaguchi, Brian Gazdik DIGITAL DOMAIN



#### Dante's Peak (1998)



© 1997 Universal Pictures. All rights reserved.



## Pirates 3 (2007)

© 2007 Disney Pictures. All rights reserved.



#### The Problem For CG



#### Concept Art: Fissure



© 2009 Columbia Pictures. All rights reserved.



#### Concept Art: Downtown





© 2009 Columbia Pictures. All rights reserved.







© 2009 Columbia Pictures. All rights reserved.





© 2009 Columbia Pictures. All rights reserved.





© 2009 Columbia Pictures. All rights reserved.

#### Tons of geometry





© 2009 Columbia Pictures. All rights reserved.

### Tons of geometry Lots of objects





© 2009 Columbia Pictures. All rights reserved.

#### Tons of geometry

- Lots of objects
- Many different materials





Why not just use CG???



# Collision detection is SLOW!!!



## "2012" (2009)





#### © 2009 Columbia Pictures. All rights reserved.

#### How Did We Do It?







- Choices
  - Havok
  - PhysX
  - Bullet
  - etc.



- Choices
  - Havok
  - PhysX
  - Bullet
  - etc.

• Fast collision detection



- Choices
  - Havok
  - PhysX
  - Bullet
  - etc.

- Fast collision detection
- Clever constraint solvers



- Choices
  - Havok
  - PhysX
  - Bullet
  - etc.

- Fast collision detection
- Clever constraint solvers
- Active developer community



- Choices
  - Havok
  - PhysX
  - Bullet
  - etc.

- Fast collision detection
- Clever constraint solvers
- Active developer community
- Expertise from games people





- Faster solution for 90% of cases
  - Solver is a black box
  - Fast RBD solver: Bullet
  - 100,000+ objects with 200,000+ constraints



- Faster solution for 90% of cases
  - Solver is a black box
  - Fast RBD solver: Bullet
  - 100,000+ objects with 200,000+ constraints
- Material behavior
  - Use constraints
  - Smart constraint rigs



- Faster solution for 90% of cases
  - Solver is a black box
  - Fast RBD solver: Bullet
  - 100,000+ objects with 200,000+ constraints
- Material behavior
  - Use constraints
  - Smart constraint rigs
- Optimize object management



- Faster solution for 90% of cases
  - Solver is a black box
  - Fast RBD solver: Bullet
  - 100,000+ objects with 200,000+ constraints
- Material behavior
  - Use constraints
  - Smart constraint rigs
- Optimize object management
- Optimize rigging workflow



#### DATA REPRESENTATION










































#### Dataflow





# A Simple Sim







- Geometry is polygon soup
  - Unique body ID on each primitive
  - { Group ID, Object ID }



- Geometry is polygon soup
  - Unique body ID on each primitive
  - { Group ID, Object ID }
- Body point cloud
  - ID, proxy shape, state
  - Mass, position, velocities, forces



- Geometry is polygon soup
  - Unique body ID on each primitive
  - { Group ID, Object ID }
- Body point cloud
  - ID, proxy shape, state
  - Mass, position, velocities, forces

- Constraint point cloud
  - Target body IDs
  - Type
  - Yield limits
  - Stiffness
  - Motor values



#### Outputs



#### Outputs

- Body data
  - Transform, and velocities
  - State
  - Activation time



#### Outputs

- Body data
  - Transform, and velocities
  - State
  - Activation time
- Collision info
  - Sum of collision impulses
  - Max collision
  - Number of impacts



#### More Outputs



#### More Outputs

- Contact points
  - Location
  - Local velocities
  - Penetration amount
  - Collision pairs



#### More Outputs

- Contact points
  - Location
  - Local velocities
  - Penetration amount
  - Collision pairs

- Constraints
  - Current state, error
  - If broken
  - Time of break
  - Break threshold





#### • All body and constraint settings are accessible as point clouds during simulation.



#### MATERIAL BEHAVIOR



#### **Keyframed Activation**



#### © 2009 Columbia Pictures. All rights reserved.









Automated transition from animated to dynamic



- Automated transition from animated to dynamic
- Method
  - Accumulate collision impulses on each body
  - Threshold against impulse



#### Constraints







#### Constraints

- Breakable constraints
  - Stretched beyond limit
  - Penalty impulse threshold







#### Constraints

- Breakable constraints
  - Stretched beyond limit
  - Penalty impulse threshold
- Ablative constraints
  - Dynamically lower stiffness
  - Distance or impulse based





#### Breaking Constraints



mamics for Film una Sume roduction





• Brittle or stiff behavior



- Brittle or stiff behavior
- Compound objects
  - Multiple hulls
  - Common parent transform



- Brittle or stiff behavior
- Compound objects
  - Multiple hulls
  - Common parent transform
- Yield criteria
  - Release on collision impulse threshold
  - Individual hull or entire compound







## Rigging





Constraining bodies



- Constraining bodies
- Constraint Placement
  - Nearest neighbors bodies
  - Grouped
  - Between groups



- Constraining bodies
- Constraint Placement
  - Nearest neighbors bodies
  - Grouped
  - Between groups
- Constraint Settings
  - Control parameters: stiffness, damping
  - Types: Point to point, limited rotation axis, hinge















Y




















persply no camy





BAS











































2 ×



### LAP\_059\_040\_fxcomp\_v026















# Rigging: Power Lines





# Rigging: Power Lines



2





# Rigging: Power Lines



2





# Rigging: Props







# 

© 2009 Columbia Pictures. All rights reserved. Input Resolution: 990x715







## LAP\_060\_210\_fxcomp\_v076



#### 2012 DIGITALDOMAIN

© 2009 Columbia Pictures. All rights reserved.

previs lens: 35mm





## Demolishing Skyscrapers





















TITLE

54











DP D 11 11 COMPANY NUMBER OF CONTRACT ARRANTER ARARAA uuu v







• Stiffness set with noise



- Stiffness set with noise
- Create weak areas



- Stiffness set with noise
- Create weak areas
- Paint on top of noise as needed



- Stiffness set with noise
- Create weak areas
- Paint on top of noise as needed
- Assign different strengths based on object type







#### 2012 DIGITALDOMAIN



## © 2009 Columbia Pictures. All rights reserved.



Input Resolution: 1920x1080

## LAP\_060\_250\_fxcomp\_v034

© 2009 Columbia Pictures. All rights reserved. Input Resolution: 1920x1080









# Layering Sims












ALLEY . 



A MARKAN 

NAMES AND DESCRIPTION OF THE OWNER OWNE THE STREET 

--11





© 2009 Columbia Pictures. All rights reserved.



Intuitive procedural workflow for RBD sims



- Intuitive procedural workflow for RBD sims
- Helps a lot to have the engine source



- Intuitive procedural workflow for RBD sims
- Helps a lot to have the engine source
- Use particle system-type approaches



- Intuitive procedural workflow for RBD sims
- Helps a lot to have the engine source
- Use particle system-type approaches
- Using lots of constraints creates complex behavior







Mass and collision dependent parameters are not intuitive





- Mass and collision dependent parameters are not intuitive
- Need to relate constraint parameters to desired material behavior





- Mass and collision dependent parameters are not intuitive
- Need to relate constraint parameters to desired material behavior
- Are we using constraints efficiently?





- Mass and collision dependent parameters are not intuitive
- Need to relate constraint parameters to desired material behavior
- Are we using constraints efficiently?
- Deformable bodies are really interesting





# Destroying Other Things Too



# "Tron: Legacy" (Wed @ 2pm in Ballroom A/B)

© Disney Enterprises, Inc. All Rights Reserved.

comp/bf8105\_comp\_l\_v56



### BM169 Transformers 3



BM169\_fx\_v109

### DIGITAL DOMAIN

### Tue April 26 2011

### Transformers 3



© Paramount Pictures. All Rights Reserved.

### BM169\_comp\_l\_v305





## Transformers 3

© Paramount Pictures. All Rights Reserved.

### MN012\_comp\_l\_v303





# Back to blowing up stairs



### None AT0180\_howto\_comp\_v01

### X-MEN: FIRST CLASS Digital Domain



© 20th Century Fox. All Rights Reserved.

Thu 12 May 15:14:33

1001



# Acknowledgements

- Dave Stephens, Ken Museth, Ramprasad Sampath, Michael Clive, Robby Thomas, Atsushi Ikarashi, Charles-Felix Chabert, Eddie Smith, Dennis Blakey
- Gustav Melich, Kyle Maxwell, Ian Frost, Steve Blakey, Kris Campbell
- Erwin Coumans, Dirk Gregorius, Erin Catto, and everyone on the Bullet Forum



## Thanks eh!

### Merci

